Closing Wed: \quad HW_2A,2B $(5.3,5.4)$ Closing Thurs: HW_2C (5.5) Monday is a holiday! (no office hours) Quick review:
Def' n : The "signed" area between $f(x)$ and the x-axis from $x=a$ to $x=b$ is the definite integral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$
FTOC(1): Areas are antiderivatives!

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

FTOC(2): If $\mathrm{F}(\mathrm{x})$ is any antideriv. of $f(x)$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Entry Task: Evaluate

$$
\int_{0}^{4} e^{x}+\sqrt{x^{3}} d x
$$

5.4 The Indefinite Integral and

Net/Total Change

Def' n : The indefinite integral of $f(x)$ is defined to be the general antiderivative of $f(x)$. We write

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any antideriv. of $f(x)$.
Example:

$$
\int \frac{4}{x^{2}}+\sec ^{2}(x)+\frac{5}{x^{2}+1} d x
$$

Net Change and Total Change

The FTOC(2) says the net change in $f(x)$ from $x=a$ to $x=b$ is the integral of its rate. That is:

$$
\int_{a}^{b} f^{\prime}(t) d t=f(b)-f(a)
$$

The FTOC (part 2) says

$$
\int_{a}^{b} v(t) d t=s(b)-s(a)
$$

'integral of velocity'= 'net change in dist' We also call this the displacement.

For example: Assume an object is moving along a straight line (up/down or left/right). $s(t)=$ 'location at time t ' $v(t)=$ 'velocity at time t^{\prime} pos. $v(t)$ means moving up/right neg. $v(t)$ means moving down/left

We define total change in dist. by

$$
\int_{a}^{b}|v(t)| d t
$$

which we compute by

1. Solving $v(t)=0$ for t.
2. Splitting up integral.

Compute positive and negative areas separately.
3. Adding together as positive numbers.

Example: $v(t)=t^{2}-2 t-8 \mathrm{ft} / \mathrm{sec}$ Compute the total distance traveled from $t=1$ to $t=6$.

5.5 The Substitution Rule

Motivation:

1. Find the following derivatives

Function	Derivative?
$\sin \left(x^{4}\right)$	
$\mathrm{e}^{\tan (x)}$	
$\ln \left(\mathrm{x}^{4}+1\right)$	

2. Rewrite as integrals:

$$
\begin{aligned}
& \int \quad d x=\sin \left(x^{4}\right)+C \\
& \int \quad d x=\mathrm{e}^{\tan (x)}+C \\
& d x=\ln \left(\mathrm{x}^{4}+1\right)+C
\end{aligned}
$$

3. Guess and check the answer to:
$\int 7 x^{6} \sin \left(x^{7}\right) d x=$

Observations:

1. We are reversing the "chain rule".
2. In each case, we see "inside" = a function inside another "outside" = derivative of inside

To help us mechanically see these connections, we use what we call:

The Substitution Rule:

If we write $u=g(x)$ and $d u=g^{\prime}(x) d x$, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Aside (you do not need to write this)

Some theory

Recall:

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(g\left(x_{i}\right)\right) g^{\prime}\left(x_{i}\right) \Delta x
$$

If we replace $u=g(x)$, then we are "transforming" the problem from one involving x and y to one with u and y.

This changes everything in the set up. The lower bound, upper bound, widths, and integrand all change!

Recall from Math 124 that

$$
g^{\prime}(x)=\frac{d u}{d x} \approx \frac{\Delta u}{\Delta x}
$$

(with more accuracy when Δx is small)

Thus, we can say that

$$
g^{\prime}(x) \Delta x \approx \Delta u
$$

In other words, if the width of the rectangles using x and y is Δx, then the width of the rectangles using u and y is $g^{\prime}(x) \Delta x$.

And if we write $u_{i}=g\left(x_{i}\right)$, then

$$
\begin{aligned}
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(g\left(x_{i}\right)\right) g^{\prime}\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(u_{i}\right) \Delta u \\
& =\int_{g(a)}^{g(b)} f(u) d u
\end{aligned}
$$

Here is a visual example of this transformation

$$
\int_{0}^{1} x^{2}\left(1+2 x^{3}\right)^{4} d x
$$

Using $u=1+2 x^{3}$ and $d u=6 x^{2} d x$, we get

$\int_{1}^{3} \frac{1}{6} u^{4} d u$

Examples:

First, try u = "inside function"
2. $\int \frac{\sin (\sqrt{x})}{\sqrt{x}} d x$

1. $\int x^{4}\left(1+x^{5}\right)^{31} d x$
2. $\int_{2}^{3} x^{2} e^{x^{3}} d x$
3. $\int \frac{x \sin \left(x^{2}\right)}{\cos ^{2}\left(\cos \left(x^{2}\right)\right)} d x$

Examples:

Then, try u = "denominator"
2. $\int \tan (x) d x$

1. $\int_{0}^{1} \frac{x}{x^{2}+3} d x$

What to do when the "old" variable remains:
 $$
\text { 2. } \int \frac{\mathrm{x}^{7}}{x^{4}+1} d x
$$

Examples:

1. $\int x^{3} \sqrt{2+x^{2}} d x$
